
Quality Conscious
Software Delivery
Lalitkumar Bhamare
Accenture Song

BEST PAPER
WINNER

Welcome

At EuroSTAR, our core purpose is to help software test professionals
to achieve their absolute full professional potential and to inspire them
through community and collaboration to help each other.

From the EuroSTAR Huddle for testers wishing to learn and improve to
the annual EuroSTAR Conference, we have been bringing testing and
quality assurance professionals together since 1993.

We are delighted to present this eBook written by Lalitkumar Bhamare,
which won the coveted Best Paper Award at the 20222 EuroSTAR
Conference - receiving high praise from each of the judges.

Enjoy!

The EuroSTAR Team

Lalitkumar Bhamare

With over 14 years of experience, Lalitkumar (Lalit) is working as
a test engineering and s/w quality leader. He has been working
in various aspects of test engineering right from the shift left to
production telemetry.

Lalit's specialty is to help organizations with their business and digital
transfor- mation using testing and quality consciousness as tools
for transformation. To achieve that he has created his own delivery
framework named Quality Con- scious Software Delivery (QCSD). Lalit is
known in the global testing industry for his contribution to the community
in various forms such as through his non- profit publication named Tea-
time with Testers , as Director at Association for Software Testing - USA,
as an international keynote speaker and testing thought leader.

Over the decade, Lalit has been working closely with industry experts
and leaders across the globe and has made an active contribution in
taking the craft of software testing ahead.

 https://www.linkedin.com/in/lalitkumarbhamare

 www.talesoftesting.com

Abstract

Major digital and business transformations taking place in organizations
warrant rapid development and innovations in the way software is
delivered. Project teams do make efforts to deliver value at high speed
without sacrificing quality. However, despite technological innovations
and modern delivery methodologies, the triple constraint triangle of
Speed-Cost-Quality remains. And when it comes to picking any two
of them, the trade-off usually happens at the cost of quality. While it
helps to monetize the business value of speed, offsetting the cost
of poor quality isnʼt always easy and it can sabotage the benefits
brought by speed. The trade-off at the cost of quality happens because
organizations lack a proven approach for this balancing act. The
steep cost of poor quality becomes very visible if we take a closer
look at software failures in the industry. Therefore, quality needs to
be seen as an opportunity. Good quality does not necessarily require
additional resources if delivered through a proven approach based on
quality consciousness.

This eBook offers one such approach to software delivery that puts
quality at the center, uses testing education as a tool to facilitate it
while promoting modern development methodologies and engineering
practices that support faster and cost-effective software deliveries.

Quality Conscious Software Delivery

05

The Cost of Quality! 01

Quality and The Balancing Act 04

Quality and The Consciousness 05

Quality, Consciousness ,and Software Delivery 06

QualiTri - Three notions of quality 06

The Product Notion of Quality 07

The People Notion of Quality 08

People and The Whole Team Quality 09

The Project Notion of Quality 11

Quality Conscious Software Delivery 13

Enable 14

Act Early, Act Small 15

Quality Criteria Session 16

Pairing for Testability Session 17

Engage 18

Product Coverage Session 18

The Power of Pairing 19

Execute 21

Evaluate 22

Conclusion 26

Table of Content
Quality Conscious Software Delivery.

The Cost of Quality!
Understanding the dynamics

The cost of quality! Read it again. What does it imply? It implies two things:

1. The cost organizations must pay if they compromise on quality, and
2. The cost organizations must bear if they are to deliver a quality product.

The organizational stance on quality is often the balancing act between these two cost aspects. Therefore it
is important to keep both considerations in mind while discussing the quality and the cost.

Speaking of which, take a look at this interesting paper published by CISQ i.e. The Cost of Poor Software
Quality in the US: A 2020 Report. According to this paper, the total Cost of Poor Software Quality (CPSQ) in the
US for the year 2020 is $2.08 trillion (T). 2

1. Quality Is Free – The Art of Making Quality Certain – by Philip B Crosby – A Mentor Book - 1980
2. Another aspect worth noting from the paper is that the 2020 US figure for the software technical debt residing in severe defects that
need to be corrected would be $1.31 T (minus interest) but did not include technical debt in the total CPSQ since it represents a future
cost which is increasing (14% rise since 2018).

The motivation for improving quality always starts with
a study of the cost of quality.– Philip B Crosby1

01

https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf

Let us pay special attention to three key findings from the CPSQ report, quoted here as-is:

• The largest contributor to CPSQ is operational software failures. For 2020, the CPSQ report team
estimated that it is ~$1.56 T, a 22% growth over 2 years – but that could be underestimated given the
meteoric rise in cybersecurity failures, and that many failures go unreported. The underlying cause is
primarily unmitigated flaws in the software.

• The next largest contributor to CPSQ is unsuccessful development projects totaling $260 billion (B),
which rose by 46% since 2018. The project failure rate has been steady at ~19% for over a decade. The
underlying causes are varied, but one consistent theme has been the lack of attention to quality.

• Legacy system problems contributed $520 B to CPSQ (down from $635 B in 2018), mostly still due to non-
value-added “waste.”

If the estimated cost of poor software quality in the US alone is so significant, what must be the case for the
rest of the world? Could it be that these estimates are a symptom of a lack of organizational attention to
quality, or there might be something else that is being overlooked?

The answer to that question lies in the second aspect of cost mentioned earlier. The cost organizations must
bear if they want to deliver a quality product. But whatmakes quality a costly affair? Does paying attention to
quality mean adding more people to do that job? Does it mean having to invest extra and dedicated time?
Does it mean having to invest in costly tools and technology?

The answer to all of those latter questions is mostly yes unless we know how to deliver quality software
otherwise. Are there other ways to do so? Definitely yes and this booklet discusses one of those. However,
before discussing the approach it is important to reflect upon certain things and discuss those in greater
detail.

Quality Conscious Software Delivery

02

3.Gerald M. Weinberg. “Quality Software: Volume 1.1: How Software Is Built”.

03

Considering the business benefit of speed a.k.a. “time to market”
and the lower production costs, the only choice organizations are
left with is a balancing act trying to deliver value at high speed
without sacrificing quality.

Quality does not exist in a non-human vaccum.
Every statement about quality is a statement
about some person(s)- Jerry Weinberg

Quality is relative and often difficult to
make all-encompassing.

That is because what quality means to
some person could be different than
what it means to you, and it could
mean completely different things for
someone else.

“Quality does not exist in a non-human
vacuum. Every statement about quality
is a statement about some person(s)”.3

Considering the business benefit of
speed a.k.a. “time to market” and the
lower production costs, the only
choice organizations are left with is a
balancing act trying to deliver value at
high speed without sacrificing quality.
Despite existing for over several
decades, we as a software industry still
have not figured out how to find that
balance right. Quality always pays the
price.

What makes this balancing act for
quality so difficult? Apparently, the
answer lies in the very nature of quality
itself.

Quality Conscious Software Delivery

04

Quality and The Balancing Act
What makes it so hard to achieve?

In his book Quality Software: Volume 1.1: How
Software Is Built, Jerry Weinberg discusses this
beautifully with a story about his niece and the book
she wrote. Terra s̓ (Jerry s̓ niece) book got published
with several gross typographical errors. And it
happened because of a bug in the word processing
software she was using.

Luckily, Jerry was consulting this company that
produced the word processor back then and he
discussed the problem with the concerned manager.
Jerry learned that the manager knew about the
problem but decided not to fix it anytime soon since
the number of users affectedby that problemwas too
small to matter. And by fixing it, they might have
introduced the worst bug that could affect many
users.

In this story, the severity of the bug for Terra was
worse. At the same time, it was less concerning for
the manager of the company that produced it. And
Jerry, for being connected with both, had to
constantly fight the dilemmawe all can understand.

When making decisions about quality, most of the
decision-makers face such a dilemma.

Therefore, when it comes to catering to the needs of
many users who understand quality differently, the
balancing act of quality can become quite difficult.

If the goal is to deliver value without compromising
the quality, it is quite imperative that we need to
understand what connects value with quality and
vice versa.

Jerry Weinberg s̓ definition of quality does it quite
brilliantly:

“Quality is value to some person.”

By "value," Jerry means, "What are people willing to
pay (do) to have their requirements met."

https://books.apple.com/de/book/quality-software-volume-1-1-how-software-is-built/id406436865?l=en
https://books.apple.com/de/book/quality-software-volume-1-1-how-software-is-built/id406436865?l=en

Quality and The Consciousness

Even though the definition of quality solves the
emotional dilemma surrounding it, the political
dilemma around it remains.4

Whose statement about quality should count? How
do we find out who that person is? What if there are
multiple people whose opinions count? And how
much they count relative to one another.

The political dilemma about quality would always
involve a series of decisions like mentioned above.
These emotional/political decisions about the

quality aremostly hidden from thepublic eye as Jerry
aptly points out.

“Whatmakes our task evenmore difficult is that most
of the time these decisions are hidden even from the
conscious minds of the persons who make them.
That's why one of the most important actions of a
quality manager is to bring such decisions into
consciousness, if not always into public awareness.”5

05

4. Despite his powerful definition of quality i.e., “Quality is value to some person”, Jerry acknowledges that definition of

quality is always emotional and political.

5. Gerald M. Weinberg. “Quality Software: Volume 1.1: How Software Is Built”.

Quality, Consciousness, and Software Delivery
Connecting what matters

Even though Jerry recommends for the quality
manager to bring all decisions about quality into
consciousness, it still raises further interesting
questions:

• Who is the quality manager especially in modern
software delivery teams (Agile, SCRUM, DevOps so
to speak) where the ownership of quality is meant
to be shared?

• How exactly do we bring decisions about quality
into our consciousness?

Giving a deeper thought to the questions above, one
may realize that focusing on the quality of the
product alone is not enough. Because products that
we deliver to the customers are not built
automatically. There are people who build them by
following certain processes and practices. Simply
put, the quality that wewish to see in the product can
never be the property of that product alone.

Therefore, along with the product, investing in
people and project notions of quality is equally
important as much as investing in the relationship
between the three. We must consider these three
notions of quality tomake our decisions as conscious
as possible.

Why do these notions and the relationship between
them matter? It has been explained better with
feedback effects, later in this booklet. Let s̓ first
understand these three notions in detail.

QualiTri - Three Notions of Quality

Three notions of Quality can be aptly explained by a
model named QualiTri.

Source: QualiTri model by Lalitkumar Bhamare

In a nutshell, the Product, People, and Project
notions of quality can be described as:

• Product - the quality of the product that the
team builds together

• People - the quality of an individual s̓ work
(tester, programmer, or anyone else on the team)

• Project - the quality of the project itself

Out of the three above, the project notion of quality is
less obvious, and Michael Bolton explains it way
better in his words,

Quality Conscious Software Delivery

06

https://www.linkedin.com/in/michael-bolton-08847/

07

“The quality of the project can be observed, assessed, or experienced by things that contribute to great
working culture within the team, clarity of roles, depth and development of skills, awareness,
availability, and application of appropriate tools and mindset, and, ultimately, with effective and
efficient development of the product.”6

The Product Notion of Quality
The quality of the product is themost familiar notion of quality that we deal with in day-to-day life as software
professionals. However, when we assess the quality of the product, we are generally so more focused on the
functional aspects that we hardly get a chance to think about other elements of the product that matter too.

For awholesomeassessment of quality,broader coverage7of the product during this assessment is important.
James Bach, in his Heuristic Test Strategy Model, shows a comprehensive list of Product Elements that are
worth covering during quality assessment and testing. The checklist is popularly known as SFDIPOT or San
Francisco DIPOT8 as a set of heuristic guidewords for the highest levels of a product coverage outline. These
elements are:

• Structure - Everything that comprises the physical product.
• Function - Everything that the product does.
• Data - Everything that the product processes.
• Interfaces - Every conduit by which the product is accessed or expressed.
• Platform - Everything on which the product depends (and that is outside your project).
• Operations - How the product will be used.
• Time - Any relationship between the product and time.

Similarly, clearly establishedQuality Criteriawithin the teamare equally important to avoid any confusionwith
making decisions about quality. The criteria at a given time can be some of the various “abilities” of the
product that define its quality. For example, Capability, Reliability, Usability, Charisma, Security, Scalability,
Compatibility, Performance, Installability, and Development. Teams better know at a given time, what aspects
of quality are important for the person(s) who matter as they work together on developing the product.
Readers are strongly recommended to check out Quality Criteria section fromHeuristic Test Strategy Model to
get the drift. The implementation part of Product Elements and Quality Criteria shall be discussed when the
QCSD framework in explained in detail in this document.

6. An excerpt fromWhole Team Testing for Whole Team Quality - by Lalitkumar Bhamare

7. Insightful analysis of what coverage means by Michael Bolton

8. See https://www.stickyminds.com/article/how-do-you-spell-testing - James Bach

https://www.satisfice.com/about-james-bach
https://www.satisfice.com/download/heuristic-test-strategy-model
https://www.stickyminds.com/article/whole-team-testing-whole-team-quality
https://www.developsense.com/blog/2022/01/testing-deep-and-shallow/
https://www.stickyminds.com/article/how-do-you-spell-testing

Quality Conscious Software Delivery

08

“Nomatter how it looks at first, it's always a people problem” - Jerry Weinberg

The software that we deliver is built by the people after all, which
makes understanding the people notion of quality as important as the
product notion of it. The people notion of quality stands for the quality
of work people in the team do. It is about the way we people
collaborate, add value with their skills and the mindset
(consciousness) they work with. Typically, when it comes to
connecting the people and quality parts in software teams, the
responsibility for quality is either given to software testers or
programmers are expected to perform testing. Though quality as a
team effort 9 is not an entirely new idea, the way organizations go
about it is still not effective it seems.

To establish a Whole Team Quality culture, organizations usually ask
programmers to test, and invest in automating everything. There are
several problems with that approach:

1. The key problem is confusing Testing with Quality. The whole
team sharing responsibility for the quality and asking non-testers
in the team to perform testing are two different things.

2. Putting most of the efforts to achieve/improve/assess quality
focusing only on the product.

3. Caring about quality way later in the process.
4. Reactive strategy i.e., to address quality concerns and risks after

they are found in a product (which is too late and costly to fix
usually).

5. Over emphasize and reliance mostly on automated checks10 that
do not discover hidden risks or find new information. These
checks only assert the known information.

9. Quality is a team effort - Succeeding with Agile - page 323 - Mike Cohen

10. See Testing vs Checking- Michael Bolton

The People Notion of Quality

https://www.developsense.com/blog/2009/08/testing-vs-checking/

09

People and The
Whole Team Quality

Picture credit: ChurchOfJesusChrist.org

Quality Conscious Software Delivery

10

Do you know the ancient parable around the six blind men and the elephant? If not so, then read this
wonderful poem by John Saxe:

The Blind Man And The Elephant

It was six men of Indostan, to learning much inclined,
who went to see the elephant (Though all of themwere blind),

that each by observation, might satisfy his mind.

The first approached the elephant, and, happening to fall,
against his broad and sturdy side, at once began to bawl:
"God bless me! but the elephant, is nothing but a wall!"

The second feeling of the tusk, cried: "Ho! what have we here,
so very round and smooth and sharp? To me tis mighty clear,

this wonder of an elephant, is very like a spear!"

The third approached the animal, and, happening to take,
the squirming trunk within his hands, "I see," quoth he,

the elephant is very like a snake!"

The fourth reached out his eager hand, and felt about the knee:
"What most this wondrous beast is like, is mighty plain," quoth he;

"Tis clear enough the elephant is very like a tree."

The fifth, who chanced to touch the ear, Said; "E'en the blindest man
can tell what this resembles most; Deny the fact who can,

This marvel of an elephant, is very like a fan!"

The sixth no sooner had begun, about the beast to grope,
than, seizing on the swinging tail, that fell within his scope,

"I see," quothe he, "the elephant is very like a rope!"

And so these men of Indostan, disputed loud and long,
each in his own opinion, exceeding stiff and strong,

Though each was partly in the right, and all were in the wrong!

So, oft in theologic wars, the disputants, I ween,
tread on in utter ignorance, of what each other mean,

and prate about the elephant, not one of them has seen!

https://allpoetry.com/The-Blind-Man-And-The-Elephant

11

Each man in the poem above is describing the truth. His truth. And because his truth comes from personal
experience, each insists that he knows what he knows. After combining their individual truth, they come to
know the reality of Elephant.

True decisions about quality depend on the correctness of the information they are based on. How we
perceive some information to be true depends on lots of factors such as our personal experience, how that
knowledge is obtained, our consciousness, and the five senses throughwhich it is evaluated and experienced.
And therefore, to develop a true understanding of the quality of the product, we need to create opportunities
where people in different roles exchange their information, combine their skills and individual truth to arrive
at a common broader conclusion about quality.

If saving time and cost matters, then enabling programmers to do their own work with higher quality
consciousness is way more effective than asking them to do skilled testing (which is not their primary job). And
same goes with other roles in the software team. The Whole Team Quality approach is at the core of the QCSD
framework.

Testing is not the goal, quality is. But testing education for the whole team can certainly lay the necessary
foundation. 11

Lisa Crispin and Janet Gregory have done quite some work on the topic of the whole team approach for
quality. Recommend checking it out.

The Project Notion of Quality

Though not visible in plain sight, the project notion of quality plays a critical role in how people in that project
deliver a quality product. The quality of the product is ultimately influenced by the quality of the work done by
people who build it, which gets affected by the quality of the project they are part of.

Are the team members supported by the management in making decisions about quality? Do they get the
funding for tools and training if required for up-skilling? How is the mindset/quality culture of the project? Is
the environment of the project supportive and motivated to improve quality? Are people encouraged to
collaborate and be quality conscious?

Answers to all the questions above tell us about the quality of the project. The better it is, the more it enables
and empowers people to do quality work and ultimately the quality of the product improves.

11. See https://www.stickyminds.com/article/whole-team-testing-whole-team-quality

https://twitter.com/lisacrispin
https://twitter.com/janetgregoryca
https://lisacrispin.com/category/whole-team-approach-2/

Quality Conscious Software Delivery

12

Though it appears so straightforward, unfortunately, it is not so easy to go about. To deliver quality, a project s̓
motivation to invest in quality is essential and this motivation often gets influenced by the quality
consciousness and culture of the organization itself. 12

Organizationʼs understanding of the value of quality is directly proportional to its quality consciousness.

With his popular “diagram of effects” or “feedback effects”, Jerry Weinberg explains this vicious cycle that
prevents projects from starting to improve quality.

“Quality Software Volume 1.1: How Software Is Built”- Chapter 6 - Feedback effects

If there is no understanding of the value of quality (read - quality consciousness), then there is no motivation
to achieve quality, and thus no improvement in the understanding of how to achieve quality. And without
knowing how to achieve quality, why would anyone try to measure its value?13

Quality is essential because it is about creating and providing value. Our ability to control software quality comes
with our ability to control the value of our software efforts. And to control the value of our software efforts (for
quality), we need to do everything we do with a higher quality consciousness.

12. In “Quality Software Volume 1.1: How Software Is Built”, Jerry Weinberg discusses software subcultures and how they

affect quality management throughout. He discusses the problem with erroneous assumptions about economics of quality,

correctness of requirements in greater detail. Readers of this booklet are recommended to give it a read.

13. Excerpt From: Gerald M. Weinberg. “Quality Software: Volume 1.1: How Software Is Built”

Quality Conscious Software Delivery

Combining the three notions of quality that we discussed, consciousness around quality that is required, and
software delivery, what we ultimately get is a goal to deliver which is:

Delivery of quality products by quality-conscious people, using
quality empowering processes.

That is what the Quality Conscious Software Delivery (QCSD) approach is all about. And now we shall discuss
how to achieve that goal.

The proven approach of QCSD can be implemented with the cycle of 4E framework i.e.

1. Enable - people and project for quality (mindset, skills, culture)
2. Engage - for quality through pairing, collaboration, risk storming, continuous testing etc.
3. Execute - for quality with clean and testable code, improving testability, skilled testing with effective

strategy, automating checks, continuous discovery and continuous feedback throughmonitoring and
alerts etc.

4. Evaluate - the evidence gathered through 1-3 to assess quality (what was done, what was found as
information, what it tells about the business risk, what needs to change)

and repeat. This 4E framework needs to be applied on the software efforts around Project, People, and
Product notions of quality. Let s̓ discuss that in detail.

13

1. Enable

This is the first and crucial step. It is about enabling people and the project for intellectual culture of quality,
enabling the quality mindset, and giving people the required skills to do that well.

Introducing and succeeding with the change in organizations is an art. In my experience, introducing the
change in subtle way, by including people and slowly making progress with it usually helps.

Ideas that involve changing mindset and introducing people with something they are not familiar with, are
often tricky to deal with. Understanding people and their reasons for doing things the way they do (or not do)
is essential aspect of introducing desired change.

Act Early, Act Small

“Act Early, Act Small” is the golden rule fromWeinberg s̓ work that can be found useful in many situations.

We discussed that Whole TeamQuality culture is at the core of succeeding with QCSD.

To enable people with quality mindset and embrace Whole Team Quality culture, it is useful to understand
what blocks them or disables them from accepting it or contributing to it in meaningful way. That is why
understanding their no, early on becomes a useful point to start with.

Particularly in case of the programmers, the cognitive dissonance15 they deal with when asked to assess
quality of their own work often prevents them from testing their own code effectively. Programmers can strive
to write the code without obvious bugs in it but that is not sufficient to uncover all hidden risks. Expecting
programmers to test their own code like professional testers, in the name of Whole Team Quality, does not
seem to be an effective approach at large. 16

The emerging trend of relying only on programmers to test their code, is deeply rooted in mistaken notion of
testing in our industry and the damage it has caused to the craft of testing17but that is beyond the scope of this
booklet.

Instead, the pairing sessions between programmers, testers, and other members of the team to get familiar with
skilled testing and using that knowledge to do their individual work with more quality consciousness, is highly
recommended.

Under QCSD framework, below are some of the session-types teams can pair on, that are found to be
immensely effective in projects the approach was followed.

15. See https://en.wikipedia.org/wiki/Cognitive_dissonance

16. See Mind, Matter, Testing and The Cargo Cult – by Lalitkumar Bhamare

17. Read We need to talk about testing by Dan North, the creator of BDD.

Quality Conscious Software Delivery

14

https://en.wikipedia.org/wiki/Cognitive_dissonance
https://en.wikipedia.org/wiki/Cognitive_dissonance
https://talesoftesting.com/mind-matter-testing-and-the-cargo-cult/
http://shorturl.at/fAKVY

15

Quality Experience Session

The common problem observed with many engineering teams is that they often assume/expect product
requirements/acceptance criteria coming from the product owners to be true and complete. In fact, there
seems to be an unwritten rule that says, “product teams will care for product quality” and “engineering teams
will look after engineering quality”.

A 100% code coverage, 100% up time, or zero defects in production metrics are useless if you do not provide
value that customers want. Therefore, when we think of the requirements for engineering implementation, it
is important to have them understood in terms of value they will create for users. Product requirements often
try to address that but engineering requirements derived from those cannot always establish that connection.

There is an interesting story about Mike Jones and uSwitch in the book Leading Quality18. Mike made his
engineering teamsprioritize every build, feature, release, and issue against the question, "Whatwillmakemore
users switch?". This change in engineering teamsʼ mindset helped their business grow from $1.3 million to a
$200million in five years.

Now imagine what would happen if design thinkingmet system thinking?

A regular and close exchange, typically during the design phase, between product design team and
engineering team (the test engineers on the team to be precise) has tremendous potential to create a better
user experience with enhanced product quality.

This exchange between Testers/Quality Advocates and User Experience professionals can co-create Quality
Experience for the stakeholders.

QA + UX = Quality Experience

Sure, the design team can get some product ideas based on user tests and interviews they perform, but there
is a lotmore thatmatters when it comes to building software that a large customer base would like to use. The
challenges faced by testers andUX professionals are usually similar in nature when it comes to ensuring better
quality and better user experience.

If a UX designer has a solution for a product problem, a skilled tester with quality insights, product knowledge,
and awareness around cross-functional dependencies can point out a variety of ways in which the solution
may fail, detecting risks earlier, helping to avoid lots of unnecessary research and rework. Testers can also
borrow realistic information fromUX's research that can help them design tests thatmatter and avoid straying
into unwanted territory. Testers can get statistical data or interaction-based information from theUX team that
can shape a better scope for their tests.

James Christie, long-time test consultant with experience in IT/Security audits builds a compelling case for
such exchange between testers and designers when he writes about resilience engineering. He says,

“Testers should be ready to explore and try to explain the holes, the gap between the designersʼ limited
knowledge and the reality that the users will deal with. We have to try to think about what the system as found
will be like. Wemust not restrict ourselves to the system as imagined.”

18. Leading Quality a book by Ronald Cummings-John & Owais Peer.

19. Resilience Requires People – James Christie

https://twitter.com/james_christie
https://www.leadingqualitybook.com/
https://clarotesting.wordpress.com/2019/02/01/resilience-requires-people/

Quality Conscious Software Delivery

16

Another highly recommended resource to make such pairing more useful, is Explore It! book by Elisabeth
Hendrickson. TheNever and Always20 tips Elisabeth shares in her book can also be used for effectiveQX pairing
and discussion.

A rather elaborative article has been written on how exactly this exchange can be done in systematic way. Give
it a read.

Quality Criteria Session

Processes if used property can act as a catalyst for enabling quality consciousness.

If you are working in a typical SCRUM setup, then consider starting with this session. The teamwould perform
this session at the time of sprint planning or discussing the sprint goal and epics. Or you could do it each
quarter (so to speak) when teams define their OKRs, KPIs or milestones to achieve in near future.

Ideally, everyone should participate, including the product owner and other relevant stakeholders.

A recommendation would be to creating a risk checklist for your team context based on the quality criteria
heuristic from the Heuristic Test Strategy Model. For each item below in the mind map determine if it is
important to your project for given sprint goals or milestones you want to achieve, then think about how you
would recognize if the product worked well or poorly in that regard.

Mindmap created by João Farias based on Heuristic Test Strategy Model

As Bach/Bolton point out, by thinking about different kinds of criteria, you will be better able to plan tests/
activities that discover important problems fast. Each of the items on your list can be thought of as a potential
risk area. Do not get overwhelmed by the volume of the ideas; not everything will be applicable for every sprint.
More important is that the team has a discussion andmakes it part of the process.

20. See https://pragprog.com/titles/ehxta/explore-it- Evaluate Results - by Elisabeth Hendrickson

https://twitter.com/testobsessed
https://twitter.com/testobsessed
https://talesoftesting.com/quality-experienceqx-co-creating-quality-experience-for-everyone-associated-with-the-product/
http://thatsabug.com//blog/the-heuristic_testing_strategy_model_mindmap_/
http://thatsabug.com//blog/the-heuristic_testing_strategy_model_mindmap_/
http://thatsabug.com//blog/the-heuristic_testing_strategy_model_mindmap_/

17

When it becomes part of the team culture to regularly assess your sprint goals or user stories for risks and
quality criteria, it will become part of an individual's habit to think of those factors consciously, putting further
efforts toward achieving them. By involving everyone in this pairing activity, you are making sure that you
address important problems before it is too late.

Pairing for Testability Session

The importance of good testability and the role it plays in enabling teams to identify risks earlier and faster,
cannot be emphasized enough. In their book on testability, AshWinter and RobMeaneymake a remark that is
closely related to the idea of Quality Consciousness.

A testable system provides information about its own limits, giving your business and technical
stakeholders the ability tomake crucial decisions at peak times when reputations can bewon or lost.21

Oneof the key characteristics of a better testable software is its un-bugginess. Itmeans the software is free from
obvious bugs so that testing efforts can find hidden risks faster. It naturally warrants a programmer to bemore
conscious of the quality of their work when they develop the code and ensure it has no obvious bugs before
integrating it with the bigger application code.

Our ability to observe the software behavior more transparently (observability) and the ability to control
software to perform experiments to find hidden risks (controllability) are equally important to become more
conscious of the factors that affect quality. Enabling project teams to build better-testable systems is one sure
way to unlock the faster discovery and faster feedback about hidden risks. Therefore, Pairing for Testability
sessions in the team on a regular basis, is strongly recommend.

Testers and programmers can pair to improve testability in several ways, such as:

• Creating an alert system for error logs from production
• Creating solutions to easily create test data
• Improving error-logging and handling for the product
• Creating solutions for better observability
• Improving the controllability to make deep explorations easier and possible
• Writing meaningful logs, especially error logs that make debugging easier
• Writing code with dedicated tags/ids so that element identification for automation becomes less

cumbersome.

Testers can perform the role of advocate here while also learning from programmers about technical details
and useful practices.

Teams can create user stories or technical debt tasks and do these activities at regular intervals. It will greatly
benefit to make intrinsic testability22 as part of your checklist for this pairing session and to use it for all major
tickets, the earlier the better.

21. Team Guide to Software Testability- Ash Winter & Rob Meaney

22. See https://www.satisfice.com/download/heuristics-of-software-testability

https://leanpub.com/softwaretestability
https://www.satisfice.com/download/heuristics-of-software-testability

Quality Conscious Software Delivery

18

2. Engage

Engage step is about doing a consciousness exchange. About making conscious efforts and staying engaged
in doing activities that ensure a strong focus on quality. Interestingly, it is not about doing extra activities but
about doing regular activities in a collaborative and quality-conscious manner.

Collaboration is the key here. If we are to think of the story of blind men again, this is the step where active
exchange of individual information, skills, and perspectives happens. And that s̓ where people in the team
influence each other with feedback and ideas which they can take back and do their work with more
consciousness.

Product Coverage session or Requirement Engineering session is one powerful way to go about it.

Product Coverage Session/Requirement Engineering session

Requirements are not an end in themselves, but ameans to an end—the end of providing value to some
person(s)23. - Jerry Weinberg

Expecting requirements to be clear, complete, and relying on thoseworks better in themanufacturing industry
with assembly lines. But building software for human use, based on defined product requirements is often not
enough. We must think critically of those requirements and derive the “true requirements” for engineering
implementation. And that warrants us to havemethods to do it well.

In QCSD framework, it is recommended to do Product Coverage Sessions or Requirement Engineering
Sessions on regular basis. It can be done on an epic level or a complex feature requests/user stories.

Experienced/dedicated testers in the team can analyze the epic or feature story using SFDIPOT (i.e., Product
Elements) checklist we discussed earlier and come up with test ideas, questions about risks, missing
information, dependencies not considered, risks identified and so on.

A guided discussion on this SFDIPOT analysis of user story/epic during grooming meetings or refinement
meetings or planning meetings (if this discussion happens that is) can help the team identify hidden risks,
determine the completeness of the requirement, create a plan for development, identify gaps and
dependencies, estimating with more information at hand, and most importantly to avoid doing rework by
accidentally finding things halfway through the programming is started.

If we are to save costs and time, and still deliver quality software then, it is always cheaper to do things right the
first time.

The approach we discussed above helps teams do exactly that.

23. Gerald M. Weinberg. “Quality Software: Volume 1.1: How Software Is Built”.

The Power of Pairing

There is one more way to go about Product Coverage
session which is through programmer and testers
pairing for the test design.

For this purpose, start with analyzing the impact of a
given change on your product, parts of the product,
downstream, or other interfaces your product must
interact with.

Pairingwith the programmerwill better help the tester
to identify these areas of impact from technical
aspects, and the programmer will benefit from the
tester's input to understand functional dependencies,
end-to-end business flows, blockers of any kind, or
even test data and environment dependencies. Of
course, the edge cases and other tricky situations are
added benefits.

In the absence of a clear idea, this is easier said than
done. If you need help getting started, consider
referring to the same product elements checklist as a
basis for this pairing session. Having a quick
discussion about all those elements of your product
should help everyone think of aspects for better all-
round test coverage.

Testers can also create a risk list that is applicable for
each product or project and pair with programmers
for developing it further. Whether to document these
ideas in pull requests, user stories, or some other way
is up to what your team feels more comfortable with.
It is less about the format or process and more about
the value it is creating.

19

This session would usually be done before coding starts on high-complexity tickets by pairing with a
programmer, or after the coding has been done to review and refine the test coverage map that the tester has
already created.

For example, let s̓ say that the user story warrants you to change how the purchase of your product is being
made, while that change depends on the payment solution being worked on by other teams. This change is
complex and beyond just changing the business flow—it involves changes onmany levels and interfaces.

There are also business-analytics reasons for tracking this change. It is unlikely for an individual to come up
with a comprehensive test strategy in a short time, so this would be a good situation for a Pairing for Coverage
session about the requirements.

A high-level outcome for the above scenario could look something like this (link to the high-resolution picture
here)

Quality Conscious Software Delivery

20

https://drive.google.com/file/d/1Lepm7dM30YsbfutdCaxxMBKTMeU5IpyI/view?usp=sharing
https://drive.google.com/file/d/1Lepm7dM30YsbfutdCaxxMBKTMeU5IpyI/view?usp=sharing

21

Suggestion would be to start practicing on larger, more complex tickets first, so that the pairing experience is
not overwhelming for non-testers. Testers can use this pairing opportunity to onboard others with given
heuristics and prepare them to have a checklist in mind while they work through their tasks. Once they get
familiar with these lists, they will find it easier to apply them to smaller items.

This pairing can also be extended to identifying what to automate and creating process flows and agreements
around ownership of automation efforts. It would be great if testers could write automation andmake sure that
other members in the team are familiar with their checks so that others can take over to add new tests or fix
broken ones if needed. Writing an automated check before deploying the change to production can also be an
effective way to encourage sharing of responsibility for automation.

Moreover, there aremany different ways a pairing exercise can be explored for good. Check out this interesting
work done aroundmob-testing by Lisi Hocke.

3. Execute

This step is about putting all the learnings from previous two steps into action and keeping at it till you are
“done” shipping it to the end user, at the same time simultaneously exploring for information about risk all
phases from ideation to delivery and even after.

Dan Ashby brilliantly explains the similar idea through his Continuous Testing in DevOpsmodel.24

24. Dan Ashbyʼs version of Continuous Testing in DevOps beautifully compliments the core idea of QCSD.

https://www.lisihocke.com/2021/02/ensemble-is-the-new-mob.html
https://twitter.com/lisihocke
https://twitter.com/DanAshby04
https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/

Quality Conscious Software Delivery

22

In a nutshell, Execute phase is about “continuous discovery and continuous feedback” for information about
risk. And to ensure we consistently provide quality that people value and do not produce what they donʼt
value.

Whichmeans:

• Programmers to write their code by keeping all information about risks and quality in mind, making
sure there are no obvious bugs, integrating early and often i.e., continuous integration

• Testers to plan, design and execute tests keeping the information about risk in mind, at all phases in
applicable manner i.e., continuous testing.

• Writing automated checks at various levels to cover known risks and exploring further to decidewhat
could be automatedmore (if needed)

• Investing in and investigating production logs and alerts to understand/ identify risks and user
behaviors. Using that information to designmore tests or re-thinking the original feature/idea

• Aligning all engineering actions, at all phases of SDLC keeping the quality aspects in mind and doing
so consciously.

4. Evaluate

This is the last but important step in QCSD framework. All the work done from Enable to Execute, can help
teams gather information which can serve as evidence for assessing the quality25 that was delivered
throughout. Teams can use engineering dashboards and metrics that are carefully designed to gather data
points about quality, which can serve as evidence for assessment.

Evaluate step is about critically assessing what was done, how it was done, what could have been done
differently, what was missed, how things helped uncover/address busines risk and what must change to yield
better results in future.

For a typical DevOps set-up, the QCSD in action can be summarized in diagram shown on next page. You can
access the high resolution version from here. Please note that the tools and technologies mentioned are not
endorsements but purely for representational purpose. Teams can always choose what works best in their
context.

25. Quality canʼt really be measured or quantified, it can only be assessed. See Assess Quality, Donʼt Measure It by James Bach

https://drive.google.com/file/d/1iqpZImPKWWfrOGFFjgL9pNDReuCe4mmF/view?usp=sharing
mailto:https://www.satisfice.com/blog/archives/487091

Quality Conscious Software Delivery

24

Get high resolution version from here

23

Get high resolution version from here

25

It is also a great idea to gather more information about delivered quality through user reviews and feedback,
analyzing the change in user behavior throughmonitoring and analytics dashboards.

To evaluate the speed of delivery, teams can measure and compare the “Lead Time” before and after
experimenting with the framework.

Below is such comparison done for one of the project teams that experimented with QCSD.

The Lead Time after QCSD period is highlighted with the eclipse in red. It was the first sprint in a long time,
where we as a team finished all the tickets and pulledmore, the so-called testing bottleneckwasminimal, and
the bugs reported that would make into the backlog or warrant some critical rework post-production were
negligible.

Quality Conscious Software Delivery

26

Conclusion

Teams change, and business contexts change too which affect the overall
delivery and end quality of the products we ship. Implementing QCSD helps you
identify the patterns that work best in your context. Figure out what patterns and
practices help you with the speed-quality-cost you need and make sure to keep
working within those patterns consistently. Consistency is the key and Quality-
consciousness is the path.

You have the key; you know the path. Now all you need to do is start walking and
unlock the secret door of Speed-Cost-Quality.

“The best time to start was yesterday. The next best time is now.”26

26. - unknown

EuroSTAR Huddle

Europe’s Largest Selection of Software
Testing Content.

1,250+ Blogs | 100+ eBooks | 200+ Webinars

The EuroSTAR team invite leading testing
experts to share their knowledge with
the community on Huddle. When you
join Huddle you can access an unrivalled
selection of resources across all the latest
topics in software testing.

Expand your testing knowledge and join
us for regular live webinars from prominent
speakers and top contributors to the world
of testing. Ask for help in the Huddle Forum
and avail of our Huddle blog for the latest
articles and trending topics in testing. Being
part of EuroSTAR Huddle is an investment
in your ongoing professional development
and will give you added skills to help you
achieve the very best in your career.

www.eurostarhuddle.com

Our Events

When you have enjoyed the online
resources on Huddle, the training continues
at our annual software testing events.

Experience the welcoming EuroSTAR
Community. Be inspired by exceptional
speakers sharing real life testing
experiences. Try out the latest tools in the
Expo and take advantage of the nonstop
networking to connect with leading
testing experts and upcoming innovators
all in one place.

EuroSTAR Software Testing
& Quality Conference

Celebrating 30 years of the EuroSTAR
Community in 2022 - the longest running
and largest software testing conference
in Europe welcomes over 1,000
delegates every year.

EuroSTAR Huddle on Tour

We also host a number of smaller
conferences and events in different
locations and bring the EuroSTAR
Huddle live experience to partner
events around Europe.

Visit EuroSTAR Website

Join The Community

https://conference.eurostarsoftwaretesting.com
https://huddle.eurostarsoftwaretesting.com

